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We consider the complexity of computing a longest increasing subsequence (LIS) parame-

terised by the length of the output. Namely, we show that the maximal length k of an in-

creasing subsequence of a permutation of the set of integers {1, 2, . . . , n} can be computed

in timeO(n log log k) in theRAMmodel, improving the previous 30-year boundofO(n log k).
The algorithmalso improves on the previousO(n log log n) bound. The optimality of the new

bound is an open question.

Reducing the computation of a longest common subsequence (LCS) between two strings

to an LIS computation leads to a simple O(r log log k)-time algorithm for two sequences

having r pairs of matching symbols and an LCS of length k.

Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.

1. Longest increasing subsequence

We consider the problem of extracting a longest increasing subsequence (LIS) from a sequence of integers. The sequence

S is assumed to be a permutation of the set {1, 2, . . . , n}, but having multiple occurrences of integers between 1 and n in

the sequence of length n does not change the result (see Section 4).

The question is related to the representation of permutations, elements of the symmetric group on {1, 2, . . . , n}, with

Young tableaux. This is certainly why it has attracted a lot of attention. See the chapter by Lascoux, Leclerc, and Thibon in

[1, Chapter 5] for a presentation of Schensted’s algorithm [2] in this context.

The question is also related to the computation of a longest common subsequence (LCS) of two strings, and to their

alignment, in at least three ways. First, the LIS of S is the LCS between S and the sequence (1, 2, . . . , n). This remark leads

to an O(n2) running time algorithm implementing the standard dynamic programming technique used for finding longest

common subsequences (it can indeed be reduced toO(n2/ log n) [3,4]). Though simple, this solution cannot compete against

direct computations. Second, the LIS question is involved in the solution towhole-genome comparisons proposed byDelcher

et al. [5] and in its subsequent variants. A comparison is based on maximal exact segment matches between the two input

genome sequences, matches that are additionally constrained to occur only once in each sequence. An LIS is used to extract

a long subsequence of matches that are compatible between each other, i.e. they appear in the same order along the two

sequences, for producing an alignment of the complete genomes. Third, the computation of an LCS between two strings

reduces to an LIS computation (see [6, Chapter 12]). Although this reduction does not lead to LCS algorithms faster than

those derived from dynamic programming techniques, the method is simple and saves a significant amount of memory

space in some standard instances of the problem. The method then compares with the Hunt–Szymanski strategy [7] (see

also [8]) but with a faster running time.
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There is an extensive literature about the distribution of the maximal length of increasing subsequences in random

permutations. As a notable result, it is known that the expected LIS length is ∼2√n as n → ∞. See [9], or the survey by

Baik et al. [10] who discuss these questions, and references therein.

Liben-Nowell et al. [11] explore the LIS problem in the streaming model which typically aims at reducing to a polyloga-

rithmic amount the memory space required by the computation, in addition to efficient running time (see also [12]).

A direct solution to computing a longest increasing subsequence, running in O(n log n) time, was proposed by Fredman

[13]. The solution is optimal if the elements are drawn from an arbitrary set due to the Ω(n log n) lower bound for sorting n

elements. Parameterised by the LIS length k, the running time is O(n log k). On integer alphabets, the fastest known solution

runs in O(n log log n) time (see [14] and references therein). It relies on the priority search trees of van Emde Boas [15,16],

which provide O(log log n) amortised time per operation when keys are drawn from the set {1, 2, . . . , n}.
The solution presented in this paper breaks the long-standing O(n log log n) upper bound down to O(n log log k), where

k is the maximal length of increasing subsequences. It extends immediately to the computation of a longest increasing

subsequence (not only its length). We assume the RAM model for evaluating the running time and the algorithm can be

viewed as a parameterised solution (k is the length of the output). This is certainly a result mostly of theoretical nature but

it opens the road to a possible linear-time LIS computation.

To get the O(n log log k) bound, we split the sequence into blocks of size k in order to feed the priority queue used in the

standard algorithm with elements drawn from a restricted universe. This is done through a series of careful renamings of

the elements. Downsizing the key universe to size O(k) leads the priority queue to work in amortised time O(log log k) and
yields the announced result. But the length k of a longest increasing subsequence is not an input of the algorithm: we show

that an approximation of it is enough, and how to compute such an approximation.

The first step of our algorithm processes the whole sequence with the mere bucket sorting technique to sort each of the

blocks. Doing so, our method produces a O(n log log k)-time algorithm for the LIS computation on an unbounded universe.

This step can be avoided if subsequently blocks can be sorted within the bounded time. For example, Han’s integer sorting

algorithm [17], running in O(k log log k) independently of the size of the universe, can be used to do that. It also yields a

whole computation that becomes online with respect to blocks because they are treated in sequence. But the techniques

implied by Han’s algorithm preclude any practical implementation of the computation. Instead, our solution is much more

simple and does not have this drawback; it only looses the online feature, which not actually required.

When our result is applied to compute a longest common subsequence between two strings of length n, we get an

algorithm running in O(r log log k)-timewith O(r) space, where r is the number of symbol matches between the strings and

k is the maximal length of common subsequences. The reduction is used for the same purpose by Rahman and Iliopoulos

[18] who achieve the computation through Range Minima Queries, a more expensive technique leading to a O(r log log n)
time algorithm only.

Section 2 recalls the core algorithm for computing a longest increasing subsequence and Section 3 describes our improved

solution. Section 4 shows the consequence on LCS computation, which reduces to LIS computation.

2. Core algorithm

We recall the core algorithm for computing a longest increasing subsequence, startingwith the computation of its length.

Let π be a permutation of {1, 2, . . . , n}. The aim is to extract a longest increasing subsequence from the sequence

S = (π(1), π(2), . . . , π(n)). Its length is denoted by LIS(S).
Elements are processed in the orderπ(1), π(2), . . . , π(n). Conceptually we compute, for each length � = 1, 2, . . . , the

smallest last element that can end an increasing subsequence of that length. It is called the best element for that length and

denoted by B[�].
Note that best elements B[1], B[2], …, form an increasing sequence. This fact is used for the choice of a data structure to

implement the list and is essential for getting an efficient computation.

One step in the algorithm is as follows (see [19]). The currently processed element π(i) can extend any increasing

subsequence having the last element smaller than it. If π(i) is larger than all the best elements computed so far for the

sequence (π(1), π(2), . . . , π(i − 1)), it produces an increasing subsequence longer than any previous one, for which it is

the last element. Otherwise, π(i) becomes the best element for an existing length: it replaces the smallest element greater

than itself in B. This leads to the next algorithm to compute the maximal length of increasing subsequences of S, in which B

is a priority queue that stores the best elements.

LIS(π, n)
1. B←− (); k←− 0

2. for i←− 1 to n

3. x←− π(i)
4. Insert(B, x)
5. if succ(B, x) exists
6. Delete(B, succ(B, x))
7. else k←− k+ 1

8. return k
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Example. Let S0 = (12, 8, 9, 1, 11, 6, 7, 2, 10, 4, 5, 3). The queue B is initially empty. Its contents after processing sequen-

tially each of the elements are successively: (12), (8), (8, 9), (1, 9), (1, 9, 11), (1, 6, 11), (1, 6, 7), (1, 2, 7), (1, 2, 7, 10),
(1, 2, 4, 10), (1, 2, 4, 5), (1, 2, 3, 5). The length of an LIS is then 4, the size of B at the end of the run.

Computing a longest increasing subsequence (not just its length) is a simple extension of the algorithm. Instead of storing

best elements only in the queue B, it suffices to store pairs of the form (x, y) where y is a best element predecessor of x.

Then, tracing back predecessor information from the last best element in B produces a longest increasing subsequence.

Example (continued). The predecessor of 5 when it was inserted in B was 4, that of 4 was 2, that of 2 was 1, which gives

the LIS: (1, 2, 4, 5) of S0 = (12, 8, 9, 1, 11, 6, 7, 2, 10, 4, 5, 3). Considering value 10, which is also a best element for an

increasing subsequence of length 4, we get in the same way another LIS: (1, 6, 7, 10).

The running time of the algorithm relies mainly on the implementation of the queue B of best elements. Using an array

and binary search (since elements are naturally sorted) to locate the position of the next element x (i.e. to implement the

operations Insert, Delete,prev, and succ) yields aO(n log n) running timealgorithm[13]. The running time is indeedO(n log k)
if k = LIS(S).

Using a more sophisticated priority list implementation in the form of van Emde Boas trees [15,16], each step can be

performed in O(log log n) amortised time yielding an overall O(n log log n) running time algorithm [7].

In the next sectionwe keep the same algorithmand the samepriority list implementation but process the initial sequence

differently to get the announced running time.

3. Improvement by renaming

In order to compute a longest increasing subsequence, having length k, from the sequence S of length n in time

O(n log log k) we want a priority queue that works in O(log log k) amortised time per operation. Our strategy to get this

result is to downsize the key universe of the queue to size O(k). This is done through a series of careful renamings of the

elements of the sequence.

We assume first that a good approximation m of k, m � k, is given. We discuss how to find such an m at the end of the

section.

The solution splits the initial sequence S into blocks of size m (except of course the last block that can be smaller), and

processes each block separately in the order of the sequence. We discuss these two points.

Splitting S into blocks and sorting them: The sequence S is split into blocks, Cj , j = 1, . . . , �n/m�, of consecutive elements:

Cj = (π((j − 1)m+ 1), π((j − 1)m+ 2), . . . , π((j − 1)m+ m)).

We also consider sorted blocks: Cs
j is the sorted list of elements of Cj . Sorted and unsorted blocks are kept in memory.

Sorting all the blocks individually by radix sort would take too much time because the elements in a given block are not

in a limited range. To sort them all in linear time, we sort them altogether but identify the block of each element. To do so,

we associate with each element π(i) the pair (�i/m�, π(i)) composed of its block number and itself. Pairs are then sorted

lexicographically using radix sort. And since the first component of each pair identifies its block, we get all the blocks sorted.

The whole procedure runs in time O(n) because the elements and the block numbers are in the set {1, 2, . . . , n}.
Processing a block: In the modified algorithm, instead of processing an element x of S like it is done in Lines 4–7 of Algorithm

LIS, we deal with a key associated with it. All the elements of a block are treated online. Before going to the next block some

work as to be done to assign keys to elements.

When processing a block, each element x is assigned a key y = key(x) in a one-to-one correspondence. The inverse

function is called item, then x = item(y). Keys are in the set {1, 2, . . . , 2m} and are inserted in the queue B.

To assign keys in the designated range we merge elements whose keys are in the queue B with the current sorted block.

Note that elementswhose keys are in B are in increasing order as alreadymentioned in Section 2,which is essential formerg-

ing. Newkeys are then defined as ranks of elements in the obtained sorted list. Sincewe assumem � k, the number of keys in

B is nomore thanm and the length of the sorted list is nomore than 2m, which implies that keys are in the set {1, 2, . . . , 2m}.
After keys are assigned, we update B with the new keys of elements that are conceptually in the queue.

The last step in the treatment of a block is to process all its elements in the order of the block. The key of each element is

dealt with as in Algorithm LIS.

The next scheme summarise the processing of a block.

Processing a block:

1. merge (item(y)|y ∈ B) with the next sorted block,

2. assign new keys in the order of the list,

3. update keys in B correspondingly,

4. insert in B keys of elements of the block in the order of the block.
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Example (continued). We consider m = 4 for the improved algorithm, and go on with the example sequence S0 =
(12, 8, 9, 1, 11, 6, 7, 2, 10, 4, 5, 3).

To avoid confusion in the description between elements of S and their keys, these are denoted by letters a, b, c, …
The three blocks are C1 = (12, 8, 9, 1), C2 = (11, 6, 7, 2), C3 = (10, 4, 5, 3), their sorted versions are Cs

1 = (1, 8, 9, 12),
Cs
2 = (2, 6, 7, 11), Cs

3 = (3, 4, 5, 10).
Processing the first block:Keys of 12, 8, 9, 1 are d, b, c, a, respectively. After processing the key of each element, the contents

of queue B are successively: (d), (b), (b, c), and (a, c).
Processing the second block: Queue B = (a, c) corresponds to the list of elements (1, 9). It is merged with Cs

2 producing

the list (1, 2, 6, 7, 9, 11). The content of B is updated to (a, e). After processing keys f, c, d, b of elements of C2, the contents

of queue B are successively: (a, e, f), (a, c, f), (a, c, d), and (a, b, d).
Processing the third block:Queue B = (a, b, d) corresponds to the list of elements (1, 2, 7). It ismergedwith Cs

3 producing

the list (1, 2, 3, 4, 5, 7, 10). The content of B is updated to (a, b, f). After processing keys g, d, e, c of elements of C3, the

contents of queue B are successively: (a, b, f, g), (a, b, d, g), (a, b, d, e), and (a, b, c, e).
The list of elements whose keys are in B is: (1, 2, 3, 5), which give an LIS of length 4 ending with 5. Computing an

increasing subsequence of length 4 can be done as explained above.

In the implementation of Algorithm LIS, the cost of all renamings is O(n) if radix sorting is used. Each operation on

the queue (Insert, Delete, Update) takes only O(log logm) amortised time because the elements in B belong to the set

{1, 2, . . . , 2m}. This gives the following statement.

Lemma 1. The implementation of Algorithm LIS with blocks of size m, m � k, and renamings runs in time O(n log logm) for a
sequence of length n.

Finding the size of blocks: In the above presentation an approximation m of the length k of longest increasing subsequences

of S satisfyingm � k, is assumed to be given. We discuss now how to find it.

The idea is to try increasing values ofm until we get the approximation leading to the announced running time. Starting

with some valuem0, possibly no more than k, form (for instance,m0 = 4), we consider the sequence (mi|i � 0) defined by

mi = mi−1logmi−1 for i > 0.

For a given value ofm in the sequence, we run Algorithm LIS implemented as described above but with this change: the

run stops if the size of the queue B becomes larger than m, and the algorithm signals the fact. Therefore, the first time the

algorithm does not stop due to this condition is when the value ofm is the smallest value in the list that is larger than k. Let

mi be this value.

Doing so, the running time of the modified Algorithm LIS is O(n log logmj) for 0 � j < i because during all these runs

the queue B contains nomore thanmj elements that all belong to {1, 2, . . . , 2mj}. For the valuemi the run finishes normally

because the condition of its complete execution,m � k, is met. The running time for this value ofm is O(n log logmi).
Noting that log log(mlogm) = 2 log logm, the total running of the whole execution of Algorithm LIS for m = m0,m1,

. . . ,mi is

O
(
n

(
�j=0,...,i1/2j−1

)
log logmi

)
,

which is also O(n log logmi), and eventually O(n log log k) because m < klog k implies log logm < 2 log log k.

The conclusion lies in the next statement.

Theorem 2. Let S be a permutation of the integers {1, 2, . . . , n} and let k be the maximal length of its increasing subsequences.

Computing k and extracting a longest increasing subsequence from S can be done in time O(n log log k).

4. Computing a longest common subsequence

In this section,we recall how theprevious algorithm to compute an LIS of a sequence of integer can beused to compute the

maximal length of subsequences common (LCS) to two strings (see [6,18]). As a consequence we get a O(n2 log log k)-time

algorithm to compute the value k of the LCS of two strings of length n. (The running time is O(mn log log k) for strings of

respective lengths m and n.) This running time reduces to O(n log log k) for some usual instances of the question.

Let x and y be two strings of length n over an integer alphabet.With each letter a occurring in xwe associate the sequence

p(a) of positions of a on y in decreasing order. Let S(x, y) be the sequence of positions on y obtained by concatenating the

sequences p(x[i]):
S(x, y) = p(x[1])p(x[2]) · · · p(x[n]).

The length of S(x, y) is the number of matches between x and y, that is, the size of set {(i, j)|x[i] = y[j]}, which is O(n2).
Then it is clear that we have the equality of the two lengths:

LCS(x, y) = LIS(S(x, y)).
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Note that the sequence S(x, y) is likely to contain several occurrences of the same positions and therefore is not a

permutation of integers as stated in Section 2. But Theorem 2 is valid as well for sequences of integers with repetitions,

although the problem seems to be more general. A solution is to modify in a fairly simple way the algorithms of previous

sections. Herewe rather consider the solution that comes down to that of a permutation as follows: each element q occurring

at position i on S(x, y) is renamed as the rank of the pair (q, bq) in the lexicographically sorted list of all these pairs. The

value bq is the number of occurrences of q from position i in S(x, y). The process is yet similar to the renaming by ranking

used above. This leads to a new sequence that is now a permutation of an initial segment of the natural numbers (without

0) and to which the previous LIS algorithm applies.

Example. Let us consider the two strings x = ababa and y = aabba. Then, p(a) = (5, 2, 1), p(b) = (4, 3), and

S(ababa, aabba) = (5, 2, 1, 4, 3, 5, 2, 1, 4, 3, 5, 2, 1).

We associate with it the sequence of pairs

((5, 3), (2, 3), (1, 3), (4, 2), (3, 2), (5, 2), (2, 2), (1, 2), (4, 1), (3, 1), (5, 1), (2, 1), (1, 1)).

When the pairs are replaced with their ranks, we get the new sequence

(13, 6, 3, 10, 8, 12, 5, 2, 9, 7, 11, 4, 1)

which LIS is 4.

The longest increasing subsequence (3, 5, 7, 11) corresponds to the list ((1, 1), (3, 2), (4, 3), (5, 5)) of pairs of positions
on x and y, respectively, which gives the longest common subsequence aaba between x and y.

The conclusion of the section is stated in the next corollary.

Corollary 3. Let k be the maximal length of longest common subsequences between two strings of length n. Let r be their number

of matches. Then, computing k and extracting a longest common subsequence of the two strings can be done in time O(r log log k),
which is also O(n2 log log k), within O(r) memory space.

The LCS notion is extensively used in sequence comparison and approximate pattern matching, and is usually extended

to the notion of an alignment between sequences (see [6, Chapter 15] and [20, Chapter 8]). In bioinformatics FastA is one of

the fastest tools used to search for an approximate match with a pattern in a database of genomic or protein sequences. The

algorithm underlying the software is based on a heuristics that locates positions where the pattern is likely to occur. Then

a dynamic programming technique is used to tune up the search close to these positions: the algorithm runs a standard

alignment algorithm inside a band or strip around a diagonal of the dynamic programming table. The width of the band is

a parameter of the software, say w, given by the user.

When the strip alignment is transposed with our above notation, computing this alignment amounts to compute the LIS

of the sequence S(x, y) = p(x[1])p(x[1]) · · · p(x[n])where each p(x[i]) is restricted to the decreasing sequence of positions

of x[i] in the segment y[j−w . . j+w] (j− i has a fixed value, it is the index of the selected diagonal). The length of S(x, y),
smaller than wn, is then O(n) and the running time of the LIS computation becomes O(n log log n).

5. Conclusion

As to whether the upper bound in Theorem 2 is optimal, and not linear, raises the question of finding a totally different

approach to compute longest increasing subsequences because the implementation of Schensted’s algorithm is squeezed as

much as possible with the present solution. But this is unlikely to happen if we consider that many researchers have already

worked on the problem.

Another possible way for exploring the complexity of the problem is to use other techniques for sorting integers (see for

example [17]). But some of them are affiliated with van Emde Boas’ method and are mostly designed to avoid the non-linear

space coming from the large range of input integers. This is not the problemwe have for computing the LIS of a permutation,

though the techniques might simplify the solution or give a direct answer to the question.
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